Secure Media Processing

BIRS, July 2005, Banff

Ton Kalker
+ Play Control / Forensic Watermark W
Secret Watermark Should Be Not Retrievable from Implementation

How to Compute Linear Correlation between Y and W from Y and E[W]?

Watermark Detection Circuitry (Linear Correlation)

Y

X

X + W

Enrypted[W]

WM Yes / WM No
Secure Media Processing

• Two examples of
 – signal processing
 – of encrypted data
 – without access to decryption/encryption keys
 • Transcoding
 • Correlation (watermark detection)

• Context
 – Non-trusted environment
 – Limited computing resources

• Other examples
 – Querying encrypted data
 – Compression of encrypted data
 – …

• Theme: secure processing of media
Introduction to Secure processing methods

• Three examples

• Exposing data structure
 – Trancoding (Apostolopolous et al.)

• Exploiting distributed knowledge
 – Compressing encrypted data (Ramchandran et al.)

• Structure preserving cryptography
 – Secure watermark detection (Katzenbeisser et al.)

• ...

Secure Transcoding
Make Transcoding Easy -- Scalable coding

Key features of scalable coding

- Embedded bitstream: Quality depends on amount of decoded data
- Only need earlier segments to decode

(John Apostolopolous, Susie Wee) ©
Adapt Encryption -- Progressive encryption

Progressive Encryption: class of algorithms that encrypt data sequentially

Key features of progressive encryption
- Earlier bits fed into later bits
- Only need earlier segments to decrypt

(John Apostolopolous, Susie Wee) ©
Formatting – Expose Truncation Information

- Recommended truncation points
- Rate-Distortion information

Secure Transcoder

Unencrypted Header

Secure Scalable Data

Read Packet Header

Truncate Data

(John Apostolopolous, Susie Wee) ©
Secure Transcoding

Approach:
- Combine scalable coding & progressive encryption

Result:
- Secure Scalable Data

(John Apostolopolous, Susie Wee) ©
Compressing Encrypted Data
Standard Approach

- Compress
- Encrypt
- Decrypt
- Decompress

Key

(Ramchandran et al.) ©
Non-Standard Approach

(Ramchandran et al.) ©
Coding with Side-Information -- Slepian-Wolf

- Bernouilli, $p \neq 0.5$
- $Y ::$ Bernouilli, $p = 0.5$

1. K known at the decoder
2. K is noisy version of Y
3. Slepian-Wolf!

(XOR) → Compress → Decompress → XOR

Key K

encoder (e.g. LDPC)

(Ramchandran et al.) ©
Structure Preserving Cryptography
Homomorphic Encryption

- Let $(M,+)$ and $(C,+)$ be two algebraic groups
 - example
 - $(M,+)$:: additive structure on \mathbb{Z} mod N
 - (C,\times) :: multiplicative structure on invertible elements of \mathbb{Z} mod N

- Let $C = (M,C,K,E,D)$ be a crypto-system on M and C

- C is called **homomorphic** when the encryption function E (and decryption function D) preserve the algebraic structures on M and C, i.e.

$$E[k,m_1] + E[k,m_2] = E[k,m_1 + m_2]$$

(Katzenbeisser, Kalker) ©
Homomorphic Encryption

• Example
 - Take \((M,+)\) and \((C,+)\) as before

\[E[k,m] = k^m \]

• Some facts
 - Homomorphic encryption systems that preserve \((+,-,x,/\) are not secure
 • Intuition: if encryption preservation preserves too much structure, security is lost
 - There exist homomorphic encryption systems that preserve \((+,-,x)\)
 • Intuition: rich homomorphic encryption systems do exist however

(Katzenbeisser, Kalker) ©
A Simple Watermarking System

• Original signal X
 - \(X = \{x_1, x_2, \ldots, x_n\} \)

• Watermark signal W
 - \(W = \{w_1, w_2, \ldots, w_n\}, w_i = \pm 1 \)

• Marked signal Y
 - \(Y = X + W \)

• Watermark detection (with threshold T)
 - Large normalized correlation between Y and W or not?

\[
\frac{\langle Y, W \rangle^2}{\langle Y, Y \rangle} = \frac{\left(\sum w_i y_i\right)^2}{\left(\sum y_i y_i\right)} \geq T
\]

(Katzenbeisser, Kalker) ©
Watermark Detection Circuitry (Linear Correlation)

Y → E[W] → WM Yes / WM No

(Katzenbeisser, Kalker) ©
Blinding of Watermark Sequence

- Known protocols require E to be component-wise
 - $E[W] = \{E[w_1], \ldots, E[w_n]\}$
 - Deterministic scrambling methods will not work
 - Example:
 - $w \in \{-1, 1\}$, then $E[w] \in \{E[-1], E[1]\}$
 - W can be estimated from binary valued $E[W]$ up to sign!
 - value set of W too limited
 - E randomized with blinding vector $R = \{r_1, \ldots, r_n\}$
 - R pseudo-random
 - $E[R,W] = \{E[r_1,w_1], \ldots, E[r_n,w_n]\}$
 - Blinding compensates for limited value set

(Katzenbeisser, Kalker) ©
Homomorphic Blinding

- **Example scrambling function**
 - N large integer
 - h, g generators of units in \mathbb{Z}_N (invertible integers modulo N)
 - h, g have inverse modulo N and powers of h, g generate all units
 - **Example**
 - $N = 10$
 - $U_{\mathbb{Z}_{10}} = \{1, 3, 7, 9\}$
 - generators 3 ($3, 3^2 = 9, 3^3 = 7, 3^4 = 1$) or 7 ($7, 9, 3, 1$)
- Then define $E[r,w]$ by (blinded El Gamal)

$$E[r,w] = h^r g^w \text{ (mod } N)$$

- $E[r,w]$ is easy to compute
- $E[r,w]$ difficult (impossible) to invert
- **Example**
 - $E[r,w] = 3^r 7^w \text{ (mod } 10)$

(Katzenbeisser, Kalker) ©
Homomorphic Blinding

- The previously defined scrambling function preserves arithmetic structure

\[E[r_1, w_1] \times E[r_2, w_2] = E[r_1 + r_2, w_1 + w_2] \]

\[(h^{r_1}g^{w_1}) \times (h^{r_2}g^{w_2}) = h^{r_1+r_2} g^{w_1+w_2} \]

- Algebraic consequence:

\[E[r, w]^m = E[m\times r, m\times w] \]

- Homomorphic property
 - addition in clear-text → multiplication in cipher-text
 - multiplication in clear-text → exponentiation in cipher-text

(Katzenbeissner, Kalker) ©
Correlation in the encrypted domain

- $E[R,W]^Y = \prod E[r_i, w_i]^{y_i} = E[\Sigma r_i y_i, \Sigma w_i y_i] = E[<R,Y>, <Y,W>]$
Squared Correlation in the encrypted domain

- Watermark detection (with threshold T)
 - Large normalized correlation between Y and W or not?

\[
\frac{\langle Y, W \rangle^2}{\langle Y, Y \rangle} = \frac{(\sum w_i y_i)^2}{(\sum y_i y_i)} \geq T
\]

- Squared correlation needed: \(\langle Y, W \rangle^2 = \sum y_i y_j w_i w_j \)

- Provide scrambled version of \(W \otimes W \), i.e. \(\{w_i w_j\} \), in stead of \(W = \{w_i\} \)

- Watermark detection circuit computes

\[
\]

(Katzenbeisser, Kalker) ©
Watermark Detection Circuitry (Linear Correlation)

$E[W \otimes W]$

WM Yes / WM No
Hostile environment computations

• Compute normalization factor

\[A = \langle Y, Y \rangle^* T \]

• Compute squared correlation

\[B = E[R,W \otimes W]^Y \otimes ^Y = E[\langle R, Y \otimes Y \rangle, \langle Y, W \rangle^2] \]

• Compute normalized correlation

\[E[\langle R, Y \otimes Y \rangle, C] = E[S,C] = B / A \]
Secure Assistance

- Bulk computations in hostile environment
- Interpretation of outcome in trusted environment

(Watermark Detection Circuitry)

Y \(\rightarrow \) \(E[R,W \otimes W] \rightarrow \) WM Yes / WM No

N

Watermark Detection Circuitry

E[S,C]

Sign(C)

- Remove blinding factor S
- Decrypt correlation value

Secure Chip

(Katzenbeisser, Kalker) ©
Paillier encryption

- Paillier encryption system
 - Removal of blinding factor
 - Retrieval of correlation value

- El Gamal encryption with well-chosen parameters
 - N well-chosen large integer
 - h, g generators of units in \mathbb{Z}_N (invertible integers modulo N)

- Blinding and encryption
 $$E[r, x] = h^rg^x$$

- Blinding factor removal
 $$E^r = E[r, h^rg^x] = h^r g^x$$

- Special g makes Discrete Logarithmic problem easy
 $$g^x \rightarrow x$$

(Katzenbeisser, Kalker) ©
Secure Assistance

- Bulk computations in hostile environment
- Interpretation of outcome in trusted environment

Watermark Detection Circuitry

$E[R,W\otimes W]$

Y

Secure Chip

N

$E[S,C]$

Sign(C)

- Remove blinding factor S
- Decrypt correlation value

WM Yes / WM No

(Katzenbeisser, Kalker) ©
Summary

• Secure Media processing

• Three examples
 - Exposing data structures
 - Exploiting distributed knowledge
 - Structure preserving encryption

• Looking ahead
 - More relevant problems?
 - More approaches?