Multimedia Forensics for Traitors Tracing

K. J. Ray Liu
Department of Electrical and Computer Engineering
University of Maryland, College Park

Acknowledgement: Wade Trappe, Z. Jane Wang, Min Wu, and Hong Zhao.
Talk Overview

- Digital Fingerprinting and Traitors Tracing
 - Motivation of digital fingerprinting
 - Background: e.g. additive spread spectrum embedding
 - Collusion attacks: collusion schemes, analysis and comparison

- Orthogonal Fingerprinting and variations
 - Capacity of tracing colluders by using orthogonal modulation
 - Group-oriented fingerprinting

- Coded Fingerprinting
 - Anti-collusion codes and code modulated fingerprints
 - Colluder identification schemes

- Traitors Behavior Dynamics in Collusion
Digital Fingerprinting and Traitors Tracing
Digital Fingerprinting and Tracing Traitors

- Leak of information as well as alteration and repackaging poses serious threats to government operations and commercial markets
 - e.g., pirated content or classified document

- Promising countermeasure: robustly embed digital fingerprints
 - Insert ID or “fingerprint” (often through conventional watermarking) to identify each user
 - Purpose: deter information leakage; digital rights management (DRM)
 - Challenge: imperceptibility, robustness, tracing capability
Case Study: Tracing Movie Screening Copies

- Potential civilian use for digital rights management (DRM)
 - *Copyright industry – $500+ Billion business ~ 5% U.S. GDP*

- Alleged Movie Pirate Arrested (23 January 2004)
 - A real case of a successful deployment of 'traitor-tracing' mechanism in the digital realm
 - Use invisible fingerprints to protect screener copies of pre-release movies

http://www.msnbc.msn.com/id/4037016/
Embedded Fingerprinting for Multimedia

Embedded Fingerprinting

Customer's ID: Alice

```
101101 ...
```

Digital Fingerprint

Multimedia Document

Fingerprinted Copy

Distribute to Alice

Multi-user Attacks

Alice

Bob

Fingerprinted doc for different users

Collusion Attack (to remove fingerprints)

Colluded Copy

Unauthorized re-distribution

Traitor Tracing

Suspicous Copy

Extract Fingerprints

101110 ...

Identify Traitors

Alice, Bob, ...

Codebook

Multimedia Forensics for Traitors Tracing
Model

Original Image x

Embed

s_1

y_1

Embed

s_2

x_2

Embed

s_K

y_K

Embed

s_{K+1}

x_{K+1}

Embed

s_n

y_n

X_M

Watermarked Images

Collusion

Additive Noise

Attacked Image d

x

s_1

Detection

s_2

Detection

s_K

Detection

s_{K+1}

Detection

s_n

Detection

d

y

x

x

x

x

x

x

x

x

x
Typical watermark-to-noise (WNR) ratio: -20dB in blind detection, 0dB in non-blind detection.

Choice of modulation schemes:

Orthogonal modulation \[s_j = u_j \]
\[\text{# of fingerprints} = \text{# of ortho. bases} \]

(Binary) coded modulation \[s_j = \sum_{i=1}^{\nu} b_{ij} u_i \]
for \[b_{ij} \in \{0,1\} \] or \[b_{ij} \in \{\pm 1\} \]
\[\text{# of fingerprints} >> \text{# of ortho. bases} \]
Performance Criteria

- **Capture one:** The major concern is to identify at least one colluder with high confidence without accusing innocent users.

- **Capture more:** The major concern is to catch more colluders, possibly at a cost of accusing more innocents. Tradeoff between the expected fraction of colluders that are successfully captured and the expected fraction of innocent users that are falsely placed under suspicion.

- **Capture all:** The goal is to capture all colluders with a high probability. Tradeoff between the efficiency rate which describes the amount of expected innocents accused per colluder and the probability of capturing all colluders.
Collusion Attacks by Multiple Users

- **Collusion:** A cost-effective attack against multimedia fingerprints
- **Result of fair collusion:**
 - Each colluder contributes equal share through averaging, interleaving, and nonlinear combining
 - Energy of embedded fingerprints may decrease

![Averaging Attack](image1)

![Interleaving Attack](image2)
Collusion Attacks (cont’d)

- Though linear collusion is simple and effective, in fact, for each component, the colluders can output any value between the minimum and maximum values, and have high confidence that such spurious value is within the range of JND. Therefore,

 We conduct studies on non-linear attacks

- Few previous works: H. Stone suggested several nonlinear collusion attacks

What is the best attack for collusions?
Nonlinear Collusion Attacks

- Assumption
 - Colluders pick value in the range of min and max of \(\{y_j(i)\}_{j \in S_c} \)
 - FP embedding and collusion attack are in the same domain

- Order statistics based collusion: for each component \(i, i=1,\ldots,N \),
 \[
 y(i) = x(i) + \alpha \cdot JND(i) \cdot g(s_j(i))_{j \in S_c}
 \]

\[
\begin{align*}
V(i)_{\text{ave}}; & \quad V(i)_{\text{min}}; \quad V(i)_{\text{max}}; \quad V(i)_{\text{median}} \\
V(i)_{\text{min max}} & = \text{average}(V(i)_{\text{min}}, V(i)_{\text{max}}) \\
V(i)_{\text{mod neg}} & = V(i)_{\text{min}} + V(i)_{\text{max}} - V(i)_{\text{med}} \\
V(i)_{\text{rand neg}} & = \begin{cases}
V(i)_{\text{min}} & \text{w.p. } p \\
V(i)_{\text{max}} & \text{w.p. } 1-p
\end{cases}
\]

\(p=0.5 \) in randomized negative attack and is indep. of \(\{s(i)\} \)
Example: use T_n Statistic

- Assume the host signal has $N=10,000$ embeddable coefficients and there are a total of $n=100$ users. $P_{fp}=10^{-3}$ is fixed and i.i.d. fingerprints $\sim N(0,1/9)$.
- **Randomized negative attack** is the most effective attack (without normalizing the distortion level introduced by different attacks).
- **Minimum, maximum and randomized negative attacks** introduce much larger distortion in the colluded copy
Averaging and Nonlinear Collusions (cont’d)

Thresholding detector is robust to different types of attacks:
 * averaging collusion; order-statistic based (min, max, ...)

Rationale from detector’s view point
 Detection statistics of averaging and many nonlinear collusions are (approx.) Gaussian distributions with same mean
 => Yield similar performance if the overall distortion is the same.

\[
g(s_j, j \in S_c) + d_1 \quad \text{nonlinear attacks}
\]
\[
\frac{1}{K} \sum_{j \in S_c} s_j + d_2 \quad \text{average attacks}
\]
Linear vs. Nonlinear Collusion

- **Conditions:** distortion introduced to the host signal is equal
- **Observation:** the underline model of attacks doesn’t matter much from the detector point of view.
- **All types of attacks can be modeled as attacks by averaging:** the models
 \[
 y_1 = g(s_j, j \in S_c) + d_1
 \]
 \[
 y_2 = \frac{1}{K} \sum_{j \in S_c} s_j + d_2
 \]

 yield similar performance. The detector is robust to different types of attacks.

крылова: We shall focus on average attack for analysis simplicity
Average Attack

Problem: determine the number of colluders \(K \) and the subset \(S_c \)

\[
y = \frac{1}{K} \sum_{j \in S_c} y_j + z = \frac{1}{K} \sum_{j \in S_c} s_j + d
\]

\[
y_j = s_j + x
\]

\[
d(i) \sim N(0, \sigma_d^2), \text{ for } i = 1, \ldots, N.\]

\[
s_j \perp s_k, \forall j \neq k
\]

\[
WNR: \eta = ||s||^2 / ||d||^2
\]
Talk Overview

- Digital Fingerprinting and Traitor Tracing
 - Motivation of DF
 - Background introduction: e.g. additive spread spectrum embedding
 - Collusion attacks: how to collude, analysis and comparison

- Orthogonal Fingerprinting and variations
 - Capacity of tracing colluders by using orthogonal modulation
 - Group-oriented fingerprinting

- Coded Fingerprinting
 - Anti-collusion codes and code modulated fingerprints
 - Colluder identification schemes

- Summary
Orthogonal Modulation for Fingerprinting
Orthogonal Fingerprinting

- Straightforward concept and easy to implement
 - Prior works by Cox et al., Stone, Killian et al.
 - Advantage in distinguishing individual fingerprints

- Two issues limit the anti-collusion capability:
 - Orthogonal fingerprints get attenuated with more colluders
 - leads to reduced detection statistics corresponding to colluders
 - Probability of false alarm increases as the total # of users increases

- Tracing Capability: How many colluders out of how many users are sufficient to break down a fingerprinting system?

- To meet desired probability of detection (P_d) & false alarm (P_{fp})
 - We can analyze the maximum allowable colluders

 => This provides design guidelines to fingerprinting systems for applications with different protection requirements
Formulations for Max. Number of Colluders

- Thresholding detector: \(\hat{j} = \text{arg max}_{j=1,\ldots,n} \{ T_N(j) \geq h \} \) (index of colluders)

- Performance criteria:

\[
P_{fp} = P_r \{ \hat{j} \cap \overline{S}_c \neq \emptyset \} = 1 - (1 - Q(h / \sigma_d))^{n-K}
\]
\[
P_d = P_r \{ \hat{j} \cap S_c \neq \emptyset \} = 1 - (1 - Q(h - \|s\| / K \sigma_d))^{K}
\]

- System requirement:

\[
P_{fp} \leq \varepsilon \quad \Rightarrow \quad K_{max}
\]
\[
P_d \geq \beta
\]

- The desired \(P_{fp} \) determines the threshold for the detector
- The desired \(P_d \) determines the maximum # of colluders allowed by the fingerprinting system
Bounds for Max. Number of Colluders

- Lower bound and Upper bound for K_{max}

 - Obtained by analytic approximations on Q-functions

\[
K_{\text{max}} \geq \min\{n, K_L\}, \text{where } K_L = \frac{\sqrt{\eta N}}{h_H} = \frac{\eta N}{\sqrt{\log(n^2/(2\pi \varepsilon^2 \log(2\pi n^2)))}} \approx \frac{\eta N}{\sqrt{\log(n)}}
\]

\[
K_{\text{max}} \leq \min\{n, K_H\}, \text{where } K_H = \frac{\sqrt{\eta N}}{h_L - Q^{-1}(1 - \tilde{\kappa}\sqrt{1 - \beta})}
\]

- two auxiliary variables are defined as

\[
h_L = \sqrt{\log(2\pi n^2)}
\]

\[
\tilde{K} = \frac{\sqrt{\eta N}}{h_L - Q^{-1}(1 - \tilde{\kappa}\sqrt{1 - \beta})}
\]
Results

- Stringent requirement: correct identification of at least one colluder without falsely accusing any
- The colluder tracing capabilities for a thousand-user system is limited to several dozens colluders
Different Performance Criteria

- **Catch more**

 the expected fraction of innocents falsely suspected: \(r_i = Q(h / \sigma_d) \)

 the expected fraction of colluders successfully captured: \(r_c = Q\left(\frac{h - \|s\|/K}{\sigma_d}\right) \)

- **Catch all**

 \(R = \frac{\text{the expected number of innocents captured}}{\text{the expected number of colluders captured}} \)

 \(P_d = P_r(S_c \subseteq \hat{j}) \)

Different sets of performance criteria were studied. It seems that an orthogonal fingerprinting system can resist to the collusion attacks based on a few dozen independent copies.
Group-Oriented Forensics

- Overcome the limitations of orthogonal fingerprinting
 - Recall: orthogonal FP treats everybody equally

- Colluders often come together in some foreseeable groups
 - Due to their geographic, social, or other connections

- Our approach: design users’ FP in a correlated way
 - Cluster users into groups based on prior knowledge
 - *Intra-group collusion is more likely than inter-group*

- Design of collusion-resistant fingerprinting systems:
 - Design of anti-collusion fingerprints to trace traitors and colluders
 - Design of detection schemes
Proposed Group Fingerprinting

Design of collusion-resistant fingerprinting systems:

- Design of anti-collusion fingerprints to trace traitors and colluders
- Design of detection schemes

Solution: construct intra-group FP in two parts, and use threshold detector (at desired intra-group false alarm) to avoid estimating k_i

$$y_{ij} = s_{ij} + x$$

$$d(i) \sim N(0, \sigma_i^2), \text{ for } i = 1, \ldots, N$$

$s_{ij} \perp s_{im}, \forall i \neq l$; equal energy $\| s \|$
Group Fingerprint Design

- **Orthogonal modulation between groups**
 - Design L orthogonal sub-systems to represent independent groups
 - M users per group \Rightarrow Total: $n = M \times L$ users

- **Assumption:** users in the same group are equally likely to collude with each other.

- **Real-valued code modulation within a group**
 - Introduce equal correlation within a group
 - $S = [s_{i1}, s_{i2}, \ldots, s_{iM}]$
 - the correlation matrix of $\{s_{i,j}\}$ is R_s
 - Each fingerprint consists of common one and individual one:
 $$s_{ij} = \sqrt{1-\rho} e_{ij} + \sqrt{\rho} a_i,$$
 where $\{e_{i1}, \ldots, e_{iM}, a_i\} \sim iid\ N(0, \sigma_u^2 I_N)$
Two-Stage Detection Scheme

- **Basic idea:** first identify groups containing colluders, then identify colluders with each possible guilty group

- **Stage-1:** group detection

 \[
 \hat{i} = \arg_{i=1}^{L} \{ T_G(i) \geq h_G \}
 \]
 (the indices of groups)

 the correlator

 \[
 T_G(i) = \frac{(y - x)^T (s_{i1} + s_{i2} + \ldots + s_{iM})}{\sqrt{\|s\|^2 [M + (M^2 - M)\rho]}}
 \]

 for \(i = 1, \ldots, L\)

 \[
 p(T_G(i) \mid K, \{k_i\}, \sigma_d^2) = \begin{cases}
 N(0, \sigma_d^2), & \text{if } k_i = 0 \\
 N \left(\frac{k_i}{K} \| s \| r, \sigma_d^2 \right), & \text{o.w.}
 \end{cases}
 \]

 \[
 r = \sqrt{[1 + (M - 1)\rho] / M}
 \]
Two-Stage Detection Scheme (cont’d)

- Stage-2: Identify colluders within each group

Define the correlator:

\[T_{ei}(j) = \frac{\sqrt{1 - \rho(y - x)^T e_{ij}}}{||s||}, \text{ for } i = 1, \ldots, L \]

\[\hat{j}_i = \arg_{j=1}^{M} \{T_{ei}(j) \geq h\} \]

(the indices of colluders within group \(i\))

\[p(T_{ei} \mid K, S_{ci}, \sigma_d^2) = N(\mu_{ei}, \sigma_d^2 I_M), \]

\[\mu_{ei}(j) = \begin{cases} \frac{1 - \rho}{K} ||s||, & \text{if } j \in S_{ci} \\ 0, & \text{o.w.} \end{cases} \]

\(h\) does not depend on \(i\)

\(T_{ei}(j)\)’s are independent
Example:

ROC Curves P_d vs. P_{fp} under different collusion settings

Constraint: equal energy \[E\{||y_c||^2\} = E\{||y_0||^2\} = ||s||^2 \]
Collusion Resistance of Group FP: K_{\max} vs. n

- K_{\max} of the proposed scheme is larger than that of the orthogonal scheme (the solid line), when n is large.
- Difference between the lower bound and upper bound is due to the fact that $k_i = K/|i|$ in our simulations (symmetric collusion pattern).
- The smaller the number of guilty groups, the better chance performance.

$P_{fp} \leq 10^{-3}$
$P_d \geq 0.8$
Extension: Tree-based Fingerprint Design

- Use tree structure to construct fingerprints combining shared and distinct components
- Unified view of fingerprint construction using code modulation
 - With hierarchically organized basis vectors
 - Allow for real-valued codes
Talk Overview

- Digital Fingerprinting and Traitor Tracing
 - Motivation of DF
 - Background introduction: e.g. additive spread spectrum embedding
 - Collusion attacks: how to colluder, analysis and comparison

- Orthogonal Fingerprinting and variations
 - Capacity of tracing colluders by using orthogonal modulation
 - Group-oriented fingerprinting

- Coded Fingerprinting
 - Anti-collusion codes (ACC) and code modulated fingerprints
 - Colluder identification schemes

- Summary
Coded Modulation for Fingerprinting
Coded Fingerprinting: Prior Work and New Issues

- **Collusion-secure codes by Boneh and Shaw ’98**
 - Targeted at generic data with “Marking assumptions”
 - an abstraction of collusion model
 - Codes are too long to be reliably embedded & extracted (Su et al.)
 - millions bits for 1000 users
 - Focus on tracing one of the colluders

- **New issues with multimedia**
 - “Marking assumptions” may no longer hold …
 - Some code bits may become erroneously decoded due to strong noise and/or inappropriate embedding
 - Can choose appropriate embedding to prevent colluders from arbitrarily changing the embedded fingerprint bits

- **Want to trace as many colluders as possible**
Overall idea of embedded combinatorial fingerprinting

- Explore unique issues associated with multimedia in fingerprint encoding, embedding & detection
- Use appropriate embedding to prevent arbitrary change on code

\[w_j = \sum_{i=1}^{B} b_{ij} u_i \quad b_{ij} \in \{\pm 1\} \]

Build correlated fingerprints in two steps

- Binary Anti-collision fingerprint codes resist up to \(K \) colluders
 - any subset of up to \(K \) users share a unique set of code bits
- Use antipodal coded modulation to embed fingerprint codes
 - via orthogonal spread spectrum sequences
 - shared bits get sustained and used to identify colluders
16-bit ACC for Detecting ≤ 3 Colluders Out of 20

User-1 \((-1, -1, -1, 1, 1, 1, \ldots, 1)\)

User-4 \((-1, 1, 1, 1, 1, \ldots, -1, 1, 1, 1)\)

Collude by Averaging

Extracted fingerprint code \((-1, 0, 0, 0, 1, \ldots, 0, 0, 0, 1, 1, 1)\)

Embed fingerprint via HVS-based spread spectrum embedding in block-DCT domain

Uniquely Identify User 1 & 4
ACC Codes Under Averaging Collusion

Table

<table>
<thead>
<tr>
<th>User</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User 4</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User 8</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User(1,4) Average</td>
<td>−1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User(1,4,8) Average</td>
<td>−1/3</td>
<td>−1/3</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
</tr>
<tr>
<td>After thresholding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram

- Averaging of multimedia domain leads to averaging in code-domain, and corresponds to AND operation after thresholding.
- Can distinguish colluded bits from sustained bits statistically with appropriate modulation and embedding, and the sustained bits are unique with respect to colluder set.
Anti-Collusion Codes (ACC)

- ACC code via combinatorial design
 - Balanced Incomplete Block Design (BIBD)

Simple Example
ACC code via (7,3,1) BIBD for handling up to 2 colluders among 7 users

- (v,k,λ)-BIBD is an (k-1)-resilient AND ACC
 - Defined as a pair \((X,A)\)
 - \(X\) is a set of \(v\) points
 - \(A\) is a collection of blocks of \(X\), each with \(k\) points
 - every pair of distinct points is in exactly \(λ\) blocks
 - \# blocks \(n = \frac{λ(v^2 - v)}{k^2 - k}\)

- Code length for \(n=1000\) users: \(O(n^{0.5}) \sim \) dozens-to-hundreds bits
 - Shorter than prior art by Boneh-Shaw \(O((\log n)^6) \sim \) millions bits
Colluder Detectors

- **Hard Detection:**
 - Detect the bit values and then estimate colluders from these values
 - Uses the fact that the combination of codevectors uniquely identifies colluders
 - Everyone is suspected as guilty and each ‘1’ bit narrows down set

- **Soft Detection:**
 - Possible candidates for soft detection:
 - *Sorting:* Use the largest detection statistics to optimize likelihood function to first determine bit values, then estimate colluder set.
 - *Sequential:* Iteratively update the likelihood function and directly identify the colluder set.
ACC Experiment with Gaussian Signals

- Higher threshold captures more colluders, but suspects more innocents
- Soft decoding gives more accurate colluder identification than hard decoding
- Joint decoding and colluder identification gives better performance than separating the two steps
Summary

- Important to design anti-collusion fingerprint for multimedia
 - Collusion is a cost-effective attack against fingerprinting
 - Anti-collusion fingerprint can allow us to trace traitor and deter unauthorized information leakage

- Good news
 - We can tolerate about a few dozens colluders
 - We can accommodate more users through the ACC

- Challenge
 - One can find enough colluders to circumvent the system
Conclusions (cont’d)

- Narrow down the suspicion size;
- Monitor the behavior pattern;
- Work in concert with other operations

So we have more work to do… tomorrow will be better!
Traitors Behavior Dynamics in Collusion
Fairness Issue in Collusion

- Multi-user collusion
 - Colluders share the profit as well as the risk of being caught

- Fairness issue in collusion
 - All colluders have the same probability of being detected

- Each colluder ensures that he/she is not taking higher risk of being detected than the others

➢ Fair-play during collusion
Achieving the Fairness of Collusion

- Prior work: all users receive copies of the same quality
 - Examples of fair collusion: averaging, cut-and-paste
 - Reduces the energy of each contributing fingerprint by an equal ratio

```
Prior work: all users receive copies of the same quality

- Examples of fair collusion: averaging, cut-and-paste
- Reduces the energy of each contributing fingerprint by an equal ratio
```
Achieving the Fairness of Collusion (cont’d)

- **Scalable multimedia coding: network and device heterogeneity**
 - Users receive copies of different quality
 - Temporal scalability: multiple versions of the same video with different frame rates
 - Layered coding: decompose the video into non-overlapping bit streams of different priorities

<table>
<thead>
<tr>
<th>Original Video</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base layer</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enh. layer 1</td>
<td></td>
<td>3-1</td>
<td></td>
<td></td>
<td>7-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enh. layer 2</td>
<td>2-1</td>
<td>4-3</td>
<td></td>
<td>6-5</td>
<td>8-7</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Problem: how to achieve the fairness of collusion in scalable fingerprinting systems?
Achieving the Fairness of Collusion (cont’d)

Quality of the colluded copy: High

Probability of being detected: $P_{\text{Carl}} > P_{\text{Bob}} > P_{\text{Alice}}$
Achieving the Fairness of Collusion (cont’d)

Quality of the colluded copy: Low

Probability of being detected: \(P_{\text{Carl}} = P_{\text{Bob}} = P_{\text{Alice}} \)

Base layer

Enh. layer 1

Enh. layer 2

Alice

Bob

Carl

Colluded copy
Achieving the Fairness of Collusion (cont’d)

Choose \(\{\alpha, \beta\} \) to guarantee the equal risk of all colluders.

Quality of the colluded copy: High

Probability of being detected: \(P_{Carl} = P_{Bob} = P_{Alice} \)
Analysis of Each Colluder’s Risk

- Consider a simple detector that uses fingerprints extracted from all layers collectively to identify colluder.

- The correlation based detection statistics: \(T_{N}^{(i)} \sim N(\mu^{(i)}, \sigma_n^2) \)
 - For different users, \(T_{N}^{(i)} \) have the same variance \(\sigma_n^2 \) but different means \(\mu^{(i)} \)

- To achieve the fairness of collusion, seek \(\{\beta_k\} \) and \(\{\alpha_l\} \) such that \(\mu^{(i)} \) are the same for all colluders.

\[
\begin{align*}
\mu^{(Alice)} &= \mu^{(Bob)} = \mu^{(Carl)} \\
\text{s.t.} \quad 0 &\leq \beta_1, \beta_2, \beta_3 \leq 1, \beta_1 + \beta_2 + \beta_3 = 1 \\
0 &\leq \alpha_1, \alpha_2 \leq 1, \alpha_1 + \alpha_2 = 1
\end{align*}
\]
Fairness Issue During Collusion

Fairness Constraints

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest resolution</td>
<td>[F^c = F_b \cup F_{e1} \cup F_{e2}]</td>
</tr>
<tr>
<td>Medium resolution</td>
<td>[F^c = F_b \cup F_{e1}]</td>
</tr>
<tr>
<td>Lowest resolution</td>
<td>[F^c = F_b]</td>
</tr>
</tbody>
</table>

Parameter Selection

- \[\beta_1 = \frac{N_b + N_{e1} + N_{e2}}{N_b} \]
- \[\beta_2 N_b + \alpha_1 N_{e1} = \frac{(N_b + N_{e1} + N_{e2})K^{b,e1}\sqrt{N_b + N_{e1}}}{K^{b,e1}\sqrt{N_b + N_{e1} + N_{e2}}} \]
- \[\beta_3 = 1 - \beta_1 - \beta_2, \alpha_2 = 1 - \alpha_1. \]

Notes
- A copy of higher resolution → more severe constraints on collusion

- Number of colluders in different subgroups
- Length of fingerprints embedded in different layers
Effectiveness of Collusion

Perceptual quality of the colluded copy

Efficiency of Fair Collusion

- A colluded copy of higher resolution → larger risk to be detected
Traitors within Traitors in Multimedia Forensic Systems
Assumptions in Prior Work

- Assumptions of fair-play during collusion in prior work
 - All colluders keep their agreement of fair collusion
 - Everyone tells the truth of his fingerprinted copy during collusion

Received copy

<table>
<thead>
<tr>
<th>Alice</th>
<th>$X^{(i_1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>$X^{(i_2)}$</td>
</tr>
<tr>
<td>Carl</td>
<td>$X^{(i_3)}$</td>
</tr>
</tbody>
</table>

Copy used during collusion

| $X^{(i_1)}$ | $X^{(i_2)}$ | $X^{(i_3)}$ |

Multi-user Collusion Attack $g(.)$
The assumption of fair-play during collusion may not always hold.

Dynamics among attackers during collusion:
- **Selfish colluders**: wish to minimize their own risk of being caught
- **Other colluders**: wish to protect their own interests

Formulation and analysis of the dynamics among colluders:
- Understand the attackers’ behavior
- Build a complete model of multi-user collusion
Risk Minimization by Selfish Colluders

- **Selfish colluders:**
 - Alice processes her fingerprinted copy before multi-user collusion to further reduce her probability of being detected.

![Multimedia Forensics for Traitors Tracing](image)

- **Perceptually similar:**
 - Pre-collision processing.

- **Multi-user Collusion Attack g(.)**
Temporal Filtering of Fingerprinted Frames

Received frames

\[\cdots X^{(i)}_{j-1} \quad X^{(i)}_{j} \quad X^{(i)}_{j+1} \cdots \]

Pre-collusion processing using temporal filtering

\(\lambda_j \)

\((1 - \lambda_j) / 2 \)

(1 - \lambda_j) / 2

Generated frames

\[\cdots \tilde{X}^{(i)}_{j-1} \quad \tilde{X}^{(i)}_{j} \quad \tilde{X}^{(i)}_{j+1} \cdots \]

- Goal: attenuate the energies of the embedded fingerprints
 - Replace each segment of the fingerprinted copy with another, seemingly similar segment from different regions of the content

- Temporal filtering of the received fingerprinted frames

\[
\tilde{X}^{(i)}_{j} = \frac{1 - \lambda_j}{2} X^{(i)}_{j-1} + \lambda_j X^{(i)}_{j} + \frac{1 - \lambda_j}{2} X^{(i)}_{j+1}, \quad 0 \leq \lambda_j \leq 1
\]
Performance Analysis

- **Perceptual quality of the newly generated frames:**
 \[
 MSE_j = \left\| \tilde{X}_j^{(i)} - X_j^{(i)} \right\|^2 = (1 - \lambda_j)^2 \phi_j / 4
 \]
 - ϕ_j is a constant of λ_j
 - A larger λ_j is preferred to minimize the perceptual distortion

- **The selfish colluder’s probability of being detected:**
 \[
 T_{N}^{(i)} = N\left(\mu^{(i)}; \sigma_n^2\right), \text{ where } \mu^{(i)} = \theta_1 + \sum_j \lambda_j \theta_2(j)
 \]
 - θ_1 and $\theta_2(j)$ are constants of λ_j, $\theta_2(j) \geq 0$
 - A smaller λ_j is preferred to minimize the probability of being detected
Selection of the Optimum Filter

- **Selfish colluders:**
 - tradeoff between the probability of being detected and the perceptual quality of the newly generated copy

- **Selection of the optimum filter coefficients**

$$PSNR_j \geq 40dB$$

![Graph showing selection of the optimum filter](image)

Alice’s probability of being detected

Quality constraints
Simulation Results

Perceptual quality of the newly generated copy

The selfish colluder’s probability of being detected

- Temporal filtering can further reduce the selfish colluder’s risk
- Smaller prob. of being detected → worse perceptual quality
Summary on Analysis of Dynamics Among Colluders

- Important to analyze the dynamics among colluders
 - Helps to understand the attackers’ behavior during collusion
 - Enables to build a complete model of multi-user collusion

- What we have known:
 - How the colluders achieve the fairness during collusion
 - How a single selfish colluder can further reduce his/her risk

- There are still a lot that we need to learn:
 - How several selfish colluders work together to minimize their risk
 - How other colluders can detect and prevent such selfish behavior during collusion
 - ...

- So we have more work to do...
Related Publications

Thanks you!