Mathematical and Perceptual Models for Image Segmentation

Thrasos Pappas
Electrical & Computer Engineering Department
Northwestern University
pappas@ece.northwestern.edu
http://www.ece.northwestern.edu/~pappas

Banff, July 27, 2005
People

- Junqing Chen, Unilever Research
- Dejan Depalov, Northwestern University
- Aleksandra Mojsilovic, IBM T.J. Watson Research Center
- Bernice Rogowitz, IBM T.J. Watson Research Center
- Dongge Li, Motorola Labs
- Bhavan Gandhi, Motorola Labs
Problem

Images

“Ideal” Segmentations

Semantic Categories

landscape

sky

mountain

water

forest

cityscape

forest

outdoor

manmade

people

Thrasos Pappas, Banff, July 27, 2005
Semantic Information Extraction

● Motivation
 – Proliferation of image and video acquisition devices
 (digital still and video cameras, image and video phones, PDAs)
 – World rich in digital visual content
 – Large personal repositories (consumer market)
 – Increasing processing capabilities

● Goal: Intelligent content management
 – Semantic labeling
 – Content organization
 – Efficient retrieval

● Techniques
 – Image and video segmentation
 – Extracting semantically related features
 – Relating features to semantic categories
Challenges

• What are the important semantic categories?

• How to link the low-level features to semantically important categories?
Semantic Categories

● Recent perceptual experiments by Mojsilovic and Rogowitz identified important semantic categories that humans use for image classification.

Conjecture: Semantic categories can be derived from combinations of low-level image features.
Bridging the Semantic Gap

High level

Semantics

Use segment descriptors and statistical techniques to relate segments (first) and scenes (later) to semantic categories/labels.

Medium level

Perceptually Uniform Segments

Incorporate knowledge of human perception and image characteristics into feature extraction and algorithm design.

Low level

Primitives
Adaptive Clustering Algorithm
Adaptive Clustering Algorithm
Adaptive Clustering Algorithm (ACA)

- K-means clustering (LBG)
 - Based on image histogram
 - No spatial constraints
 - Each cluster is characterized by constant intensity
- Add spatial constraints
 - Region model: Markov/Gibbs random field
- Make it adaptive
 - Cluster centers spatially varying
 - Texture model: spatially varying mean + WGN
- MAP estimates of segmentation x given observation y

$$p(x \mid y) \propto p(y \mid x)p(x)$$
ACA

• K-means minimizes

\[\sum_s (y_s - \mu_{x_s})^2 \]

• Adaptive clustering maximizes

\[p(x \mid y) \propto \exp \left\{ -\sum_s \frac{1}{2\sigma^2}(y_s - \mu_{x_s})^2 - \sum_C V_C(x) \right\} \]

• Or, minimizes

\[\sum_s \frac{1}{2\sigma^2}(y_s - \mu_{x_s})^2 + \sum_C V_C(x) \]
ACA: Local Intensity Function Estimation

- Given x, segmentation into classes
- Estimate $\mu_{x_s} \forall x_s, s$
 - Intensity function for each class at each point in the image
- Use hierarchy of window sizes
ACA: Region Estimation

- Given $\mu_s^{x_s}, \forall x_s, s$

- Maximize $p(x | y)$ (too difficult)

- Maximize marginal densities (Iterated Conditional Modes)

$$p(x_s | y, x_q, \forall q \neq s) = p(x_s | y_s, x_q, q \in N_s)$$
K-means vs. ACA
K-means Clustering
K-means Clustering
ACA: Local Intensity Functions (15x15)
ACA: Model (15x15)
Adaptive Clustering Algorithm

Original Image

ACA Class Labels

ACA Model (7x7)
Adaptive Clustering Algorithm

Original Image ACA Class Labels ACA Model (15x15)
Adaptive Clustering Algorithm

Original Image ACA Class Labels ACA Model (31x31)
Image Restoration Models

- Simple space varying image model
 [Kuan et al.` 85]
 - Space-varying mean + white Gaussian noise

- Spatially-adaptive LMMSE estimator
 - Use local sample mean and local sample variance

- No explicit model for region boundaries
 - Computes sample mean/variance across boundaries
K-means vs. ACA
Adaptive Perceptual Color-Texture Segmentation
Natural Textures

- Combine color composition, spatial characteristics
- Non-uniform statistical characteristics (lighting, perspective)
- Perceptually uniform
- Need spatially adaptive features
- **Small number of parameters**
Texture Synthesis [Portilla-Simoncelli’00]

Figure 14. Synthesis results on photographic pseudo-periodic textures. See caption of Fig. 12.

Figure 15. Synthesis results on photographic aperiodic textures. See caption of Fig. 12.
Adaptive Perceptual Color-Texture Segmentation

Original

Color Composition Feature Extraction

Spatial Texture Feature Extraction

Final segmentation

Grayscale

Slowly varying Dominant Colors

Texture Class Labels
Dominant Colors

- Human eye cannot simultaneously perceive a large number of colors
 - Even though, under appropriate adaptation, it can distinguish more than 2M colors
- Small set of color categories
 - Efficient representation
 - Easier to capture invariant properties of object appearance
- Color categories are related statistical structure of perceived environment
 - K-means clustering to compute color categories [Yendrikovskij’00]
Spatially Adaptive Dominant Colors

- Dominant colors [Ma’97, Mojsilovic’00]
 - For class of images
 - For a given image
- Current approaches to extract dominant colors:
 - K-means (VQ) [LBG’80];
 - Mean-shift [Comaniciu-Meer’97];
 Assumption: constant dominant colors
- Proposed approach:
 - Spatially adaptive dominant colors
 - Use ACA
Comparison with Mean-Shift

Original Image ACA
under-segmentation over-segmentation
quantization

4 colors
Color Composition Feature

- **Constant Dominant Colors:**
 \[f_c = \{(c_i, p_i), i = 0, \ldots, n, p_i \in [0,1]\} \]
 \(c_i\): color, \(p_i\): percentage

- **Spatially Adaptive Dominant Colors:**
 \[f_c(s, N_s) = \{(c_i, p_i), i = 0, \ldots, n, p_i \in [0,1]\} \]

- **ACA adapts to local characteristics.**
- **Dominant colors relatively constant in small neighborhood:**
 Can approximate with intensity at center of window.
Color Feature Similarity Metric

- Optimal Color Composition Distance (OCCD) [Mojsilovic’00]
 - Quantize color component based on percentage
 - Find best color correspondence
 - Then compute distance as sum of distances between matched colors (in a given colorspace)
Illustration of OCCD computation

- Color Quantization unit $p = 10$
- Weight of the link is C_{max}-cost (color distance in Lab color space, $C_{\text{max}} = 376$)
- Solve maximum graph matching problem using Gabow’s algorithm.
- Apply color metric to resulting graph.

OCCD dist = $61 \times 0.3 + 55 \times 0.2 + 30 \times 0.1 + 131 \times 0.1 = 45.4$
Spatial Texture Features

- Grayscale image component (vs. achromatic pattern map)
- Multiscale frequency decomposition
 - DWT (9/7 Daubechies)
 - Steerable filters [Freeman-Adelson’91]
 - Gabor filters [Daugman’86]
- Energy of subband coefficients is sparse
 - Use local median energy
Steerable Pyramid Decomposition

Ideal spectrum
2-level decomposition

Ideal spectrum
1-level decomposition
Steerable Pyramid Decomposition

Ideal spectrum

Actual spectrum
Smooth vs. Non-smooth Classification

For each pixel:
- $S_{\text{max}} =$ Maximum of 4 subband responses
- $S_i =$ Index of maximum coefficients
- Local median energy extraction on S_{max}
- 2-level K-means on local median
 (Check validity of smooth/non-smooth cluster)
- Use threshold provided by subjective test
Classification of Non-smooth Regions

- Construct local histogram of S_i

- “Complex”: no dominant orientation, i.e., no index dominates (1^{st} and 2^{nd} maximum of histogram are close, or maximum is not large enough)

- Otherwise classify according to dominant orientation (max index) as “horizontal,” “vertical,” “+45,” “-45.”

- Can be used with any multiscale frequency decomposition
Multi-scale Texture Classification

- Apply texture classification at each scale
- Combine texture classes from different scales based on the following rules:
 - “smooth”: “smooth” at all scales
 - “Vertical,” “Horizontal,” “+45°,” “-45°”: consistent texture classification across all scales. Note: “complex” or “smooth” is consistent with any single direction
 - “complex”: none of above satisfied
Image Segmentation

• “Smooth” regions:
 – Based on ACA
 – Merge based on color difference along border of each region pair
 – Small border regions merged with non-smooth

• “Texture” regions:
 – Initial segmentation by region growing
 – Iterative border refinement

Before Merge

After Merge

Crude segmentation

Final segmentation

Thrasos Pappas, Banff, July 27, 2005
Initial Segmentation by Region Growing

- Starting from any pixel in the textured regions, grow by adding nearby pixels with similar color features (in the OCCD sense).
- Use higher threshold if pixels belong to same texture class; lower threshold if pixels belong to different texture classes.
- Hierarchical grid approach.
- Paint the resulting segment with average color of that region.
Hierarchical Grid Approach

- Do initial region growing on coarse grid using OCCD
- Reduce grid spacing (half)
- Find OCCD to the classified neighbors. If close to none, create new texture class.
- Add simple spatial constraints (MRF-type) to OCCD distance
- Repeat until all pixels are classified.
- Faster without loss of accuracy

Black: non-texture region
White: textured region
Why MRF Constraints Are Necessary

Crude:

Final:

\[
\beta = 0 \quad \beta = 0.5 \quad \beta = 1.0
\]
Iterative Border Refinement

Color features in inner window represent local features
Color features in outer window represent region-wide characteristics
Window pairs used: \{35/11, 21/9, 11/5, 11/3\}
Results with steerable filters
without Perceptual Tuning

Original ACA Texture Classes Segmentation

Thrasos Pappas, Banff, July 27, 2005
Results with steerable filters
with Perceptual Tuning

Original ACA Texture Classes Segmentation
Perceptual Tuning

- Smooth vs. non-smooth classification
- Thresholds for Dominant Orientation
 - Horizontal, vertical, +45, -45, complex classification
- Threshold for color feature similarity
- Texture window size
 - Varies with scale
Texture Discrimination Test*

Setup:
- Viewing distance: about 2 feet;
- Subjects with normal vision (corrected), normal color vision
- 37 texture images from photo CD at 4-5 scales

* http://www.ece.northwestern.edu/~pappas/research/texture_perception_test/
Test I: Texture Classification

- **SMOOTH**: Uniform or slowly varying image intensity; no objects or sharp boundaries present.
- **TEXTURE**: Approximately uniform texture patterns; may be slowly varying (further classification into horizontal, vertical, +45, -45, complex categories)
- **OTHER**: None of the above, e.g., non-uniform texture, multiple regions, multiple objects
Test II: Texture Similarity

- Similarity scores:
 - 0: dissimilar
 - 1: somewhat similar
 - 2: similar
 - 3: same texture
Segmentation Results
Segmentation
Evaluation
Metric
Human Segmentation Examples

- No “ground truth” for natural image segmentation
- The segmentations of different people are consistent.
Segmentation Evaluation Metric

[Martin’01]

- Quantify the consistency between segmentations of different granularities; allow mutual refinements
- Local error measure (asymmetric):
 \[
 E(S_1, S_2, p_i) = \frac{|R(S_1, p_i) \setminus R(S_2, p_i)|}{|R(S_1, p_i)|}
 \]
- Local Consistency Error (LCE):
 \[
 LCE(S_1, S_2) = \frac{1}{n} \sum_{i} \min\{E(S_1, S_2, p_i), E(S_2, S_1, p_i)\}
 \]
- Global Consistency Error (GCE):
 \[
 GCE(S_1, S_2) = \frac{1}{n} \min\left\{\sum_{i} E(S_1, S_2, p_i), \sum_{i} E(S_2, S_1, p_i)\right\}
 \]
- \(GCE \geq LCE \)
Comparison with JSEG Segmentation

Human Segmentation

Proposed Approach

JSEG (merge=0.4)

GCE=0.04 LCE=0.02

GCE=0.08 LCE=0.07

GCE=0.33 LCE=0.28

GCE=0.04 LCE=0.04

GCE=0.08 LCE=0.07
Comparison with JSEG Segmentation

Human Segmentation Proposed Approach JSEG (merge=0.4)

GCE=0.26 LCE=0.17
GCE=0.11 LCE=0.08
GCE=0.09 LCE=0.04

GCE=0.01 LCE=0.07
GCE=0.26 LCE=0.17
GCE=0.10 LCE=0.08
Segment Classification
Semantic Information Extraction at Segment Level

Dominant Colors (ACA)

Segments as Medium Level Descriptors

Spatial Texture

- Location
- Shape
- Size

Plus:

Dominant Colors & Percentages

quantize

horizontal

vertical

complex

smooth

- 45

45

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Smth Ver. 45 Hor. -45 Cplx

Thrasos Pappas, Banff, July 27, 2005
Color Naming Syntax

<table>
<thead>
<tr>
<th>Hue primary</th>
<th>Hue secondary</th>
<th>Lightness</th>
<th>Saturation</th>
<th>Achromatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>red, orange</td>
<td>reddish</td>
<td>grayish</td>
<td>blackish</td>
<td>black</td>
</tr>
<tr>
<td>brown</td>
<td>brownish</td>
<td>moderate</td>
<td>very-dark</td>
<td>gray</td>
</tr>
<tr>
<td>yellow</td>
<td>yellowish</td>
<td>medium</td>
<td>dark</td>
<td>gray</td>
</tr>
<tr>
<td>green</td>
<td>greenish</td>
<td>strong</td>
<td>medium</td>
<td>whitish</td>
</tr>
<tr>
<td>blue</td>
<td>bluish</td>
<td>vivid</td>
<td>light</td>
<td>whitish</td>
</tr>
<tr>
<td>purple</td>
<td>purplish</td>
<td></td>
<td>very-light</td>
<td>whitish</td>
</tr>
<tr>
<td>pink</td>
<td>pinkish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beige</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>magenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>olive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

267 quantization points (NBS, Mojsilovic’02)

Eleven Colors That Are Almost Never Confused (Boynton’89)
Labels

Man Made
- Building
- Bridge
- Cityscape
- Car
- Boat
- Airplane
- Pavement
- Other Man Made

Natural
- Vegetation
 - Flower
 - Grass
 - Woods/Bushes
 - Forest
- Sky
 - Day-sky
 - Night-sky
 - Sun
 - Clouds
 - Sunrise/Sunset
- Landform
 - Water
 - Ground
 - Mountain
 - Snow

People
- Face
- Person
- Crowd

Animal

Scene

Indoor **Outdoor**: Street, skyline, beach, garden, night scene, day scene
Database

- Training
- Testing

- Corel: 12,000
- Key Photos: 2,000
- Other: 600
- Corbis
Annotation Aide

- XML output
Results

- 1600 photos
- No humans or animals
- 4000 manually labeled segments
- 80% training 20% testing
- Fisher Linear Discriminant method
- 14 colors, 6 textures
Results

• **Recall**: correctly labeled / total relevant segments

• **Precision**: correctly labeled / total assigned to label by algorithm