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We present a rigorous electromagnetic formalism for defining, evaluating, and optimizing the degrees of free-
dom of an optical system. The analysis is valid for the delivery of information with electromagnetic waves
under arbitrary boundary conditions communicating between domains in three-dimensional space. We show
that, although in principle there is an infinity of degrees of freedom, the effective number is finite owing to the
presence of noise. This is in agreement with the restricted classical theories that showed this property for
specific optical systems and within the scalar and paraxial approximations. We further show that the best
transmitting and receiving functions are the solutions of well-defined eigenvalue equations. The present ap-
proach is useful for understanding and designing modern optical systems for which the previous approaches
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are not applicable, as well as for application in inverse and synthesis problems. © 2000 Optical Society of

America [S0740-3232(00)01005-X]
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1. INTRODUCTION

The evaluation of the information that can be transmitted
by an optical system is a problem of primary concern.
The first step toward this goal is to determine the number
of independent parameters needed to represent the out-
put field or signal, which is known as the number of de-
grees of freedom (DOF). The significance of the DOF
stems from its relation to performance measures such as
resolution and capacity, in areas such as imaging or in-
verse problems from indirect measurements. In another
approach, the DOF determine the number of useful inde-
pendent communication channels available for the trans-
mission of information.

In inverse problems, the DOF indicate the maximum
amount of information that can be retrieved from the data
in the presence of noise. In synthesis problems, the num-
ber of DOF permits the calculation of the number of dif-
ferent field distributions that it is possible to generate
and, ultimately, the attainable resolution. Our approach
will apply in all cases, regardless of the differences in ter-
minology that may appear in different fields.

Classical theories were developed within the scalar ap-
proximations, considering transmission of information
(generally images) between parallel planes of specific op-
tical systems. Two main approaches were pursued,
namely, that based on the sampling theory,’? and that
based on the theory of the prolate functions.> However,
many modern photonic systems appear to operate well be-
yond the limits of validity of such theories. For example,
systems utilizing nonparaxial waves or the near field or
those involving nonplanar or three-dimensional (3D) do-
mains cannot be analyzed in this framework.

Therefore in this paper we present a theory for the
evaluation of the DOF or communication channels gener-
ated by arbitrary sources and transmitted by electromag-
netic wave fields through systems with arbitrary bound-
ary conditions. The difficulty here originates in dealing
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with vector fields in 3D space and in general with shift-
variant systems. The conclusions are valid for one-
dimensional (1D), two-dimensional (2D), or 3D sources
and receivers, as well as for systems working from the
near field to the far field, and involving more- or less-
complicated architectures. The theory can be applied, for
example, to near-field optical microscopy, dense optical
interconnects, high-space—bandwidth diffractive optics,
antennas, and in general various scattering and inverse
problems.

The approach in this paper is similar to that recently
discussed by one of us*® for communication channels be-
tween volumes with scalar waves but considers the full
vector electromagnetic case and generalizes to space-
variant systems where there may be other fixed objects
present. In addition, a rigorous mathematical approach
in multidimensional Hilbert space is developed.

This paper is organized as follows: Section 2 presents
a brief survey of previous research on the subject of DOF
in optics and electromagnetism. Section 3 introduces the
problem of EM DOF as a communication problem be-
tween domains in 3D space; we introduce the main defi-
nitions that are used throughout the paper. Section 4
presents a theorem stating the finiteness of the total in-
terconnection strengths, which leads to the concept of a
finite number of DOF in the presence of noise. Section 5
shows how to calculate the best source functions, leading
to an eigenvalue problem. In Section 6 we show that the
corresponding receiving functions are solutions of a dual
eigenvalue problem. The main result of Section 4 is then
specialized to the case of communication with these eigen-
functions, leading to a sum rule in terms of the eigenval-
ues. Section 7 shows an alternative and equivalent ap-
proach in terms of the singular system of the problem.
In Section 8 we present two examples that illustrate the
main features of the theory. Finally, the conclusions are
presented in Section 9. For greater clarity in under-
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standing the main ideas presented in this work, we have
left most of the mathematical details and background in-
formation to (six) appendixes.

2. PREVIOUS RESEARCH

Toraldo di Francia! noted, using the sampling theorem,
that an image formed by a finite pupil has a finite number
of DOF. Gabor? extended a previous argument by Max
von Laue in the optical domain and related it to his theory
of information.® His basic interpretation involved the no-
tion that each degree of freedom is associated with a
Gaussian beam emerging from the object function and ar-
riving at the image plane. The choice of a Gaussian
beam is based on the following two facts: (a) The Gauss-
ian function is the function with the most space-frequency
localization,® and (b) Gaussian beams are invariant upon
propagation in free space or what is known now as first-
order optical systems.” He also extended his analysis to
obtain a metric to evaluate the information content of an
image based on the notion of entropy and considering the
quantum character of light.

The analysis based on the sampling theorem presents
some inconsistencies.>®? If the object were to have finite
size, knowledge of its Fourier transform over a finite in-
terval (pupil) would suffice to reconstruct the complete
function by analytic continuation. Moreover, taking into
account that no functions exist that are both space and
band limited, sampling the Fourier transform of a finite
object over a finite domain will not provide all the avail-
able information. Indeed, there are contributions of (not
considered) sampling points outside the domain under
consideration. Taking these contributions into account
would lead to an infinite number of DOF. Another re-
lated aspect of the sampling theorem is that it is not ap-
plicable for small values of the space—bandwidth
product,® a problem already raised by Gabor.?

The solution to these questions involves considering
the inevitable existence of noise, and it was clarified by a
later paper by Toraldo di Francia,® in which he applied
the theory of the prolate spheroidal functions developed
by Slepian and Pollack!® and Landau and Pollack.!
These functions are the eigenfunctions of the finite Fou-
rier transform, i.e., the functions ¢,,(x) that satisfy

1
fﬁﬂx—yWAw®“=M%u% (2.1)

where the convolution kernel is k(x — y) = [sinc(x
— y))[7(x —y)]. A notable property is that the set of
functions ¢,(x) is complete and orthogonal in both (-1, 1)
and (—o, ). The number 2¢/7 is associated with the so-
called Shannon number obtained from the sampling
theorem.!H12

The prolate functions can be directly applied to linear
shift-invariant systems such as coherent imaging through
an aberration-free slit aperture (Fig. 1). The object func-
tion can be expanded in the prolate functions as

0

X
om=E%Mﬁ, (2.2)

n=0
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Fig. 1. Coherent imaging system used in the classical theory of
DOF.

where 2X is the object width and «, are expansion coef-
ficients. The limiting pupil acts as an ideal low-pass fil-
ter, leading to an image function that can be also ex-
panded in the ¢, (x):

(-3 Y

Each ¢,(x) can be associated with a degree of freedom,
and knowledge of the eigenvalues suffices to reconstruct
all the information related to an arbitrarily large number
of DOF. However, it is known that the eigenvalues \,,
possess a steplike behavior, decreasing exponentially to
zero. The conclusion is that in the presence of noise, only
a finite number of coefficients \ ,«,, in Eq. (2.3) can be ac-
curately determined.

Extension to 2D pupils other than square or circular®®
usually requires the use of numerical techniques, since
there is no general analytical solution for the correspond-
ing eigenvalue problem. The relation between the num-
ber of DOF and the Shannon number was further clarified
in Refs. 14-16. In the extension to incoherent imaging!”
it was shown that the eigenvalues possess a triangle-
function behavior; i.e., the eigenvalues decrease gradually
to zero thus increasing the influence of noise. Reference
18 extended the previous concepts by introducing the
singular-value formalism for imaging systems with asym-
metric point-spread functions. The effects of noise and
tolerances were discussed in Ref. 19 for finite convolution
operators. Meanwhile, the singular-value decomposition
was used in inverse problems as a means of determining
the amount of meaningful information attainable from
measured data.2’

The DOF can also be defined for partially coherent
sources?!?? and polychromatic images.?> The relation
between DOF and capacity was discussed in Ref. 24. Re-
cently, in Refs. 4 and 5 a different approach was pre-
sented: the problem was considered in terms of spatial
channels for communication between volumes in free
space by an analysis valid for scalar waves. This work
showed that, for the scalar-wave case, considering the
more general situation of volumes rather than only pla-
nar surfaces, there is a method for defining the orthogo-
nal spatial channels. It also showed that there is an ex-
act sum rule for the strengths of the connections between
the two volumes, based only on a simple volume integral.
This approach, when specialized to plane, parallel sur-
faces in the paraxial approximation, reproduces the pro-
late spheroidal function results quoted above.

Furthermore, the vector character of light fields has
been traditionally considered in a duplication factor that
takes into account the two polarization directions.? How-
ever, this is only an approximation, which is especially
poor in the near field or in tightly focused beams. In elec-
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tromagnetics there have been some partial efforts for de-
termining the DOF of scattered fields. A sampling ap-
proach was presented in Ref. 25. In Ref. 26 a singular-
value decomposition in free space for 1D planar domains
was presented in the context of inverse scattering prob-
lems. The problem is thus simplified because it leads to
a scalar, shift-invariant integral operator.

3. ELECTROMAGNETIC COMMUNICATION
CHANNELS IN THREE-DIMENSIONAL
DOMAINS

In this section we evaluate the DOF of an optical system
with a rigorous EM approach. In this context it is useful
to think of the optical system as a communication system.
Mathematically, this involves a transmitting function or
input signal, a receiving function or output signal, and an
operational representation of the system or system re-
sponse. Accordingly, determining the number of DOF is
equivalent to determining the number of useful indepen-
dent channels available for the transmission of informa-
tion through that system. Thus our concern is not the
DOF of the signal, image, or field but the DOF that can be
identified after transmission through a well-defined sys-
tem. Although this distinction is essential,?’” not much
attention has been given to it in the past.

Let us consider a general system, as depicted in Fig. 2,
composed of transmitting sources within a transmitting
domain V; and a separate (disjoint) receiving domain
Vr. In addition, some material bodies may be present in
the 3D space. Here we restrict the analysis to linear, ho-
mogeneous, and isotropic media and monochromatic ra-
diation. In a separate communication we will deal with
polychromatic radiation and time-varying signals. The
fundamental concepts can also be extended to inhomoge-
neous and anisotropic media.

We consider electric (magnetic) current density sources
represented by the complex vector field J(r')[M(r')]
within V7. These sources can be real (impressed)
sources, induced sources, or fictitious sources, i.e., sources
that appear as a result of the application of equivalence
theorems with the purpose of simplifying the problem un-
der consideration.?® The generated electric and magnetic
complex vector fields within V3 are represented as E(r)
and H(r). The full mathematical description of the prob-
lem is given by Maxwell equations, which in our case can
be written as follows:

-VXE=jouH+ M,

VXH=(0c+ jwe)E + dJ, 3.1

v, A Ve

Fig. 2. Communication with EM waves between transmitting

(V) and receiving (V) domains in the presence of material bod-
ies (B).
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where u = u(w), € = e(w), and o = o(w) are the com-
plex permeability, permittivity, and conductivity, respec-
tively, of the medium and w is the radiation frequency. A
rigorous solution, under given boundary conditions im-
posed by material bodies, can be obtained by using the
Green’s function approach leading to integral equations?
(see Appendix A). In our case this leads to the following
expressions,

E(r):j (e, " )d(xr")dr’ +f (e, " )M(r')dr’,
Vr

Vr

H(r) = J' Ioi(r, v )J(x")dr' + J' Tyo(r, v )M(xr')dr’,
Vrp Vrp
(3.2)

where I'y;(x, r') (k,l = 1,2) are the tensor Green’s func-
tions subject to the appropriate boundary conditions.?83%
Note that these tensor (or dyadic) Green’s functions are
not independent, and only two suffice to determine the
rest of them. A similar consideration applies to the rela-
tion between E and H, i.e., either of them can be obtained
from the other.

For brevity we consider only electric current sources
[i.e., we presume for the moment that M(r’) = 0], but
the extension to magnetic sources is straightforward.
Moreover, one can invoke an equivalence theorem to state
an equivalent problem involving only one type of source
(see also Section 9). Therefore we can write

E(r) =j I'(r,r")d(xr")dr'. (3.3)
Vr

From a systems point of view, I'(r, r’) is the impulse re-
sponse of a linear, in general shift-variant, system.

For an adequate mathematical formalism, let us con-
sider the Hilbert space £5(V) composed of vectors of com-
plex functions f(r) = [f1(r) fo(r) f5(r)]T defined on V,
where fi(r), fo(r), f3(r) € Lo(V) (the Lebesgue inte-
grable functions defined on V), with the inner product de-
fined as (f, g)y = [y (r)g* (r)dr. Each element of the
space ES(V) represents a different vector field within V.
In our case we consider field sources and electric fields be-
longing to Hilbert spaces T'(Vy) and R(Vpg), respectively.

Let us thus consider orthonormal bases in the domains
VT and VR :

aTl(r’)’ aTQ(r’) g aTi(r,) seeey
aRl(r), aRQ(I'),... aRj(r) yeeey (34)
respectively. The ap; are source fields, and the ap; are

electric fields. Accordingly, we can expand J(r’) and
E(r) as follows,

I(x') = D bap(r'),  E(r) = 2 dag(r), (35)
i J

where b; = [J(r), ar,(r)]y, and d; = [E(r), ag;(r)]y,.
Substitution into Eq. (3.3) leads to
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> djag,(r) = >, bif I(r,r')ap(r)dr’ (3.6
J i Vr

where we have interchanged the order of integration and
summation.?’ Performing the inner product with ap (1),
within V5, on both sides of Eq. (3.6) gives the following
relation between the coefficients of the transmitting and
the receiving functions:

dj = 2 gjibi9 3.7
where

jV f aRj (I‘)F I‘ r,)aTL(r )dr dr = g[aTl ’ aRj]
' 3.8)

gj; are (complex) scalars with absolute values represent-
ing the strength of the coupling connection between
sources at the transmitting domain and wave functions at
the receiving domain. Thus the strength of the receiving
function ap;(r) in V that results from a source ap;(r’)
within V7 is|gj;|. For a given system and once the bases
are chosen, Eq. (3.7) gives the basic communications rela-
tion between receiving and transmitting waves. It is also
possible to think of the {g;;} as an infinite square matrix
of interconnection strengths. A heuristic interpretation
of the coupling strengths in three dimensions for scalar
waves can be found in Ref. 5.

In Sections 4 and 5 we discuss the choice of the optimal
bases, i.e., those that lead to a minimum number of cou-
pling coefficients. In the matrix representation, the op-
timal coefficients are associated with the bases that diag-
onalize the infinite matrix.

4. EVALUATION OF THE TOTAL
CONNECTION STRENGTHS

In this section we derive a sum rule for evaluating the
connections’ strengths. As will be shown, this sum rule
implies the finiteness and invariance (for a given system)
of the total interconnection strengths. From this result
we are led to the notion of a finite number of DOF in the
presence of noise.

From the properties of the Green’s functions we know
that I'(r, r’) is continuous except at r = r’. Since we are
considering disjoint domains Vi and Vi, I'(r, r’') can be
expanded bilinearly as

I'(r,r') = 2 gjiag;(r) ® axl(r), (4.1)
ij

where ® represents the tensor (or outer) product defined
as follows: If w = (uq,us,us)’ and v = (vy, vy, 037,
then {u ® v},; = u,v,, with the notation {M}, as the el-
ements of a tensor M. Note that if the ay;(r) form an or-
thonormal basis, the aj;(r) do so also. We also define the
norm: [M]|? = =3,_,|{M},,|2. Applying Parseval’s theo-
rem, we prove in Appendix B that the sum of the squared
strengths S satisfies the following relation:

S = ZIgﬂI2 ffv IT(x, v')|2dedr’.  (4.2)
R
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The integral on the right-hand side of Eq. (4.2) is finite,
stating that the total strength of the interconnections is
bounded; i.e., the strength of the interconnections is neg-
ligible for all but a finite number of DOF. Therefore, al-
though in principle the number of DOF is infinite, the
number of practically useful channels is finite owing to
the presence of noise. In effect, weakly connected com-
munication channels will lead to weak receiving waves
that become useless when the inevitable presence of noise
is considered.

Observe that S depends only on the evaluation of the
Green’s function I'(r, r') over the domains V; and Vp.
The boundary conditions are implicit in I'(x, ¥'). Thus in
free space we obtain that S depends only on the geometry
of the domains.

Note also that the result of Eq. (4.2) is valid regardless
of the specific selected communication functions, implying
that even the best strategy for the selection of the trans-
mitting and receiving functions cannot lead to more than
a finite number of effective DOF. However, proper sys-
tem design can improve the number of channels with con-
nection strengths above the thresholds imposed by noise
levels. Note also that a high value of S does not neces-
sarily indicate that the number of channels with |gﬁ|2
above a certain threshold is high, since such S may be due
to a large number of weakly connected channels.

It should be noted that S has dimensions, but we can
consider the nondimensional magnitude S = S/(we)? or
the normalized number S = S/|g;/|3ax. In the classical
case of a (scalar) imaging system with a steplike behavior
of the eigenvalues, the latter can be associated with a
generalized Shannon number. This is true because most
of the eigenvalues above a given threshold are close to
unity, and then S approximates the number of effective
DOF. However, in general, this is not the case because
the eigenvalues are not unity and they decrease gradually
to zero.

In this section we have shown that the total connection
strength S is finite and invariant upon changes in the
transmitting and receiving functions. In addition, (once
normalized) it can be understood as a generalized Shan-
non number.

5. SELECTION OF THE SOURCE
FUNCTIONS

A natural criterion for selecting source and receiving
functions is to choose the most strongly connected func-
tions. We shall see below that the functions selected in
this way generate two orthogonal sets of vector functions.
Therefore our strategy leads to one-to-one communication
channels; i.e., activation of such a source function will
lead to the excitation of the corresponding receiving func-
tion and to a null excitation of the rest of the receiving
functions.

To find these best communication functions, we maxi-
mize the connection strengths between pairs of receiving
and transmitting functions. Formally, the problem is to
maximize |g;;|?, as defined in Eq. (3.8), for normalized
source functions. Let us consider the normalized source
function Jy (r). It will generate an unnormalized receiv-
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ing field E(r) as given by Eq. (3.3). In Appendix C
we prove that Ey(r) = E/{/(E,E)y,_ is, among the nor-
malized receiving functions ap(r), the one that maxi-
mizes the corresponding coupling coefficient |gl|?
= |g[dy, ag]|? for this given Jy(r); i.e.,
|g[dn, agll® < |g[dy, Ex]I?,
VaR cap € R(VR), ||aRH = 1. (5.1)

Therefore we have reduced the problem to find the nor-
malized source Jy(r) that maximizes

|g|2 = |g[JN,EN]|2
(E,E)y,

f E”(r)E* (r)dr
Vr

f f JNT(r’)K(r’,r”)JN*(r”)dr’dr”, (5.2)
VpJVr
where
K(r', r") :f (e, »")T*(r, r")dr. (5.3)
Vg

In other words, the best communication sources are
those that maximize | g|?, which turn out to be those that
maximize the intensity of the electric field within the re-
ceiving volume V. The functional to be maximized can
be expressed explicitly in terms of Jy (r) as in Eq. (5.2).

Let us define the operator K as the following tensor in-
tegral operator:

ICJ:f K*(r, r)J(r')dr'. (5.4)
Vr

In Appendix D we show that this is a compact, nonnega-
tive, and self-adjoint operator. These properties enable
us to derive important conclusions regarding the proper-
ties of the solutions of the problem stated in Eq. (5.2).
First, note that we can rewrite Eq. (5.2) as

lgl? = (3, KJ) = (KJ, J), (5.5)

the last equality being satisfied because of the self-
adjointness of . According to known results from func-
tional analysis,?? K possesses nonnegative eigenvalues:
lgol? = |g1|> = -+ = 0, and its eigenfunctions s,, form an
orthogonal set.

The source function that maximizes | g|? is the eigen-
function of K with the largest eigenvalue. Moreover, the
set of orthogonal functions with the successive values of
|g|? is the set of eigenfunctions arranged in descending
order of their eigenvalues. We can write the correspond-
ing eigenvalue equation as

Ks, = |gul%s, - (5.6)

Finally, note that we can expand the kernel K(r, r’) as

Kr,r') = 2, |gnl%,(r) @ s T(x). (5.7)
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6. SELECTION OF THE RECEIVING
FUNCTIONS

In Section 5 we showed how to find the best source func-
tions based on the solution of an eigenvalue equation.
Obviously, the corresponding receiving functions can be
obtained from Eq. (3.3). However, the best receiving
functions also satisfy a dual eigenvalue equation to Eq.
(5.6) and thus are the solutions of a maximization prob-
lem dual to Eq. (5.2). Therefore the receiving functions
possess properties similar to those of the source functions.
Moreover, the dual problem presents an alternative way
of calculating both sets of functions.

Let us consider the set of eigenfunctions of K:s, (n
= 0,1,2...). By definition, the corresponding normal-
ized field functions at the receiving domain [ ¢,,(r)] satisfy

|g,len(r) = E,(r) = f I(r,r')s,(r')dr’ (6.1)
Vrp

where we used the fact that
E,

E
=— = —. (6.2)
(E,,E,)v. gl

Multiplying from the left both sides of Eq. (6.1) by
I'*T(r, r'), integrating over Vg, and changing the order
of integration, we get

n
en

f I*(x, )| g, €,(r)dr = f K*(r',r")s,(r")dr",
Vg Vp

(6.3)
and according to Eq. (5.6),

f *T(r, ') e, (r)dr = | g,ls,(r"), (6.4)
VR

that is, the dual of Eq. (3.3) but only for the case of the
eigenfunctions s,, . This equation shows how to calculate
s,(r') once ¢,(r) and | g,| are known.

Note that although there is freedom to determine the
square root of | g,|? up to an arbitrary phase, we consid-
ered the positive root in Egs. (6.1)-(6.4), without loss of
generality. In effect, note also that €,(r) and s,(r’) are
determined up to a constant phase.

Substitution into Eq. (6.1) and changing the order of in-
tegration leads to

|gn|2€n(r) = f L*(r1>r)en(r1)dr1 = ﬁen(r)a (65)

Vg

where
L(r;, 1) =J I'*(r, v")TT(xy, ¥')dr’, (6.6)
Vr

and £ is the corresponding tensor integral operator.
Equation (6.5) is an eigenvalue equation, analogous to Eq.
(5.6), for the case of the best receiving functions.

Finally, the sum rule [Eq. (4.2)] can be expressed in
terms of the eigenvalues, which are the coupling
strengths when the source and receiving functions are se-
lected as the eigenfunctions of Egs. (5.6) and (6.5):
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> lgal? = fv fv IT(r, e)2dede’.  (6.7)
n T R

7. ALTERNATIVE APPROACH:
SINGULAR-VALUE DECOMPOSITION

We can state an alternative and equivalent approach to
the determination of the DOF based on the singular-value
decomposition of the source field (see Appendix E). Al-
though mathematically more elegant, this approach is
somewhat less intuitive for justifying the definition of the
DOF, and thus we introduce it only after our previous dis-
cussion.

Accordingly, we consider the linear tensor operator G
defined by the tensor Green’s function I

GJ = f I'(r, r")J(r")dr’, (7.1)
Vr

and its adjoint [it is easy to verify that (GJ,E)y,
= J, Q+E)VR]:

G'E = f *T(r, ¢ )E(r')dr. (7.2)
Vr

By definition, the singular values of G are the eigenvalues
of G*'G. However, it is easy to prove that £ = G'G and
L = GG*. Therefore the previously defined | g,|, square
roots of the eigenvalues of the operators K and L, are the
singular values of both G and G*. Then we can state di-
rectly the existence of eigenfunctions s, (r’) € T(V;) and
€,(r) € R(Vpg), such that (see Appendix F)

Gren(r) = |guls, Vn, (7.3)

which correspond to Eqgs. (6.4) and (3.3), respectively.
The singular system is then defined as (| g,/, s, , €,)-

In addition, we can expand source and receiving func-
tions as follows,

Gs,(r') = | g,|€,(r),

©

J=2 (Js)s, + PI, G =2 |g,l(J,s,)e,,
n=1 n=1

(7.4)

where P :V; — N(G) is the orthogonal projection operator
of Vi onto the nullspace N(§) = {J € Vz:GJ = 0}; i.e.,
PdJ represents those source functions leading to a null re-
sponse in the system defined by the operator G.

In this context the role of the invariants is clear in the
definition of the DOF. This fact determines the connec-
tion between this work and classical theories. Heuristi-
cally, information can be regarded as an entity that, in
the absence of noise, is propagated from the input to the
output of the system without destruction. For example,
in the case of the prolate DOF, this invariance is apparent
in the property that, within a finite domain, the eigen-
functions of Eq. (2.1) keep their shape after passing
through the ideal optical system of Fig. 1. In our more
general case, the invariance is manifested in the property
of Egs. (7.3): The DOF are defined by those source func-
tions s, that, after diffraction in space, generate field
functions e, that contain the same information, i.e., that
upon an adjoint transformation G* lead to the original
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source function. In this sense the operator G* can be re-
garded as a generalized EM phase-conjugate operator.

8. EXAMPLES

As pointed out above, classical theories cannot be applied
in cases where the scalar approximation is not valid.
Therefore we will present two examples showing how to
apply the proposed approach to the problem of evaluating
the DOF. Previous approaches fail in these cases be-
cause we deal with dimensions of the order of the wave-
length, with 3D domains, and the near field.

To apply our previous results to a real problem we
must first define the domain of the sources and the do-
main of the receiving functions. The second step is to
calculate the Green’s tensor, which in some cases such as
in free space, possesses an analytical expression (see Ap-
pendix A and Ref. 29). Otherwise, a numerical technique
must be used to calculate it. The third step is to solve
the eigenvalue equation [Eq. (5.6) or alternatively Eq.
(6.5)] that leads to the singular system of the problem.
Since these equations are defined in an infinite-
dimensional space, we must transform them into a finite-
dimensional space such that the solutions agree in the
limit of an infinitely increasing dimension. A well-
known numerical technique to solve this kind of eigen-
value equation is the Galerkin method,?? which is ex-
plained in Appendix F.

Accordingly, we have to choose a finite set of normal-
ized source functions ap;(r'), ape(r’),... apy(r’) that de-
fine a subspace in V. In the examples that follow we
used pulse functions. In the new finite-dimensional
space the problem is reduced to finding the eigenvalues
and eigenvectors of a matrix M,,,, = (Kar,, ar, )y, (see
Appendix F). The calculation of the matrix is simplified
if we consider that M,,,, = (E,,, Em)VR, where E, is the
field generated by ap, within Vz. The eigenvalues of M
are approximations to the eigenvalues of K, and the
eigenvectors of M are the expansion coefficients (in the
ap; functions) of an approximation to the eigenfunctions
of K. Once the source functions are obtained, the corre-
sponding receiving functions are calculated with Eq. (3.3).

In the first example we consider 1D transmitting and
receiving domains in 3D free space, i.e., infinitely thin cyl-
inders, as shown in Fig. 3. This implies that the source
currents can flow in only one direction, x, leading to a re-
duction in the DOF. The electric field within the receiv-
ing domain can assume any value or direction.

The calculated eigenvalues are represented in Fig. 4.
As expected, owing to the small dimensions of both do-

----->-)---———n—

Fig. 3. 1D transmitting and receiving domains used in the first
example of EM DOF calculation in 3D space (A = 500 nm).
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Fig. 4. Calculated eigenvalues for the system of Fig. 3. Note
the rapid reduction of the coupling strengths.
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Fig. 5. Singular functions for the system of Fig. 3. (a) Source
functions s, , (b) x component of the receiving functions € ,*, (¢) z

component of the receiving functions € ,°. The solid curves rep-
resent the real part of the functions; the dashed curves represent
the imaginary part.
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Fig. 6. 1D transmitting and 3D receiving domains used in the
second example of EM DOF d = 1.04\, a = 0.04\, b = 0.07\,
¢ = 0.1IN (A = 500 nm).

mains, the eigenvalues decrease rapidly to zero (although
they never reach it). The first three eigenvalues account
for approximately 93% of the total sum of Eq. (6.7). The
coupling strengths will be practical only for a finite num-
ber of DOF. The information carried by the receiving
singular functions corresponding to low eigenvalues will
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be lost in the presence of noise. Different criteria can be
considered to determine the threshold values, which de-
pend on the noise level and statistics. However, it is ap-
parent in our case that for n > 3 the coupling strengths
are too low to be of any practical value, leading to no more
than three DOF for any reasonable criterion.

As stated, Galerkin’s method can also be used to calcu-
late the singular functions of the system. In Fig. 5(a) we
show some of the source singular functions. In this case,
we see that higher-order eigenfunctions lead to a higher
degree of detail or higher harmonics. In effect, the num-
ber of zero crossings is equal to n.

In addition, the functions show a high degree of sym-
metry: For n even the functions are even, while for n odd
the functions are odd. Figures 5(b) and 5(c) show the x
and z components of the electric field along the receiving
domain (e ," and €,” respectively). Note that the y com-
ponent €,” =0 (n = 1,2,...).

In a second example we considered the same transmit-
ting domain but a 3D receiving domain of subwavelength
dimensions, as shown in Fig. 6. The eigenvalues are

x (1)

Fig. 8. Source singular functions s, for the system of Fig. 6.
Solid curve, real part of the function; dashed curve, imaginary
part.
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shown in Fig. 7. Although in this case there are two rel-
evant DOF, the absolute coupling strengths (not repre-
sented in the plot) are higher than in the previous case.
This is quantified by the sum rule result of Eq. (6.7),
which is approximately five times larger than in the pre-
vious example. The corresponding source singular func-
tions are represented in Fig. 8.

9. DISCUSSION AND CONCLUSIONS

We justified our definition of DOF starting from a general
approach of interconnection among modes within input
and output domains. In this context we defined coupling
coefficients and showed the relation between input and
output in terms of these coefficients that form an infinite
square coupling matrix.

A sum rule, which can be regarded as a generalization
of the Shannon number, implies that independent of the
basis functions used to calculate the coupling matrix, the
total strength of the interconnections is invariant. This
means that using functions different from the eigenfunc-
tions leads to the use of more parameters with lower
strengths.

Imposing a criterion for the best communication modes
led us to an eigenvalue equation that defines the best
communication functions (the eigenfunctions) and also
the interconnection strengths (the eigenvalues). It also
leads to a minimum number of coupling coefficients dif-
ferent from zero. Thus the best communication strategy
is attained when there is a one-to-one correspondence be-
tween transmitting and receiving functions. The best re-
ceiving functions are obtained by solving a dual eigen-
value equation.

We showed that this approach is equivalent to a
singular-value decomposition with the corresponding ten-
sor operator. We then proposed an interpretation of the
DOF in terms of invariants in the diffraction process.

The relevant singular values according to the specific
signal-to-noise level can be associated with an effective
number of DOF. Hence the (complex) coefficients associ-
ated with the corresponding source functions [in the ex-
pansion of Eq. (7.4)] suffice to represent the effective in-
formation transmitted by the system.

It should be noted that from Eq. (3.3) we have assumed
that we are considering only the electric field E(r). The
assumption was that once E(r) is known, the magnetic
field H(r) can be completely determined, and thus speci-
fication of the magnetic field does not introduce new in-
formation. However, this is true only in the absence of
noise, as we explain in what follows. In effect, the pres-
ence of noise led us to the conclusion that only a finite
number of DOF are relevant; i.e., not all the information
concerning E(r) can be retrieved. Therefore neither can
all the information concerning H(r) be retrieved by mea-
suring E(r). Would it be possible to retrieve additional
information by measuring H(r)? Let us assume that we
consider the magnetic field as given in the second part of
Eq. (3.2), with M = 0. A completely analogous develop-
ment of the theory for the DOF generated by the determi-
nation of H(r) would lead in general to a different set of
singular source functions s,(r’). This is true because we
are dealing with a different operator G such that
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Ezf Tyy(r, v')d(r")dr, 9.1)
Vr

where, in general, I'j; # I'y; (Ref. 29). Thus, in the pres-
ence of noise, the relevant singular functions after deter-
mination of H(r) may deliver information different from
that delivered by the relevant singular functions after de-
termination of E(r). Nevertheless, in general, this addi-
tional information will not be completely independent
from that obtained from E(r); i.e., there might be some
redundancy. In conclusion, in the presence of noise,
measuring both the electric and the magnetic fields may
lead to additional useful information in comparison with
determining only one of them. In a synthesis problem,
this reasoning implies that after a specifying E(r) with
use of the available DOF, one still has some freedom to
specify H(r).

In Section 3 we assumed null magnetic sources
[M(r') = 0]. This is by no means a limitation, since in
an analogous way we could have developed the theory ex-
clusively for magnetic sources. Moreover, if both types of
source are present, we can always transform the equa-
tions mathematically to a single type of source.?® There-
fore, owing to this equivalence, the consideration of a sec-
ond type of source does not add new DOF. Indeed, if we
consider the receiving functions that are due to a given
type of source, the additional receiving functions that are
due to the second type of source will not be orthogonal to
the functions already considered.

Another important aspect is that when the theory is de-
veloped for the scalar case and taken to the limit of thin
planar surfaces and paraxial approximation, it coincides
with the theory presented by Toraldo di Francia, leading
to the prolate spheroidal functions and the Shannon
number.’

The examples demonstrate the calculation of DOF of
EM fields in 3D space. They also show the predicted be-
havior of the singular values and eigenfunctions. The
numerical approach is feasible with current computing
capabilities for reasonably large problems. The achieve-
ment of lower-complexity numerical procedures that
would allow the solution of more complex structures and
systems deserves further investigation. Note also that
the complexity of the problem increases with complicated
boundary conditions or nonuniform media.

For future work, starting from this point, it is interest-
ing to take into consideration the signal-to-noise ratios
and their statistics in order to extend the theory to estab-
lish a general theory of information in optics. This could
be achieved for example by (a) establishing criteria for de-
termining the effective DOF, i.e., defining the optimal
number of DOF for a given signal-to-noise ratio; (b) calcu-
lating the capacity of given systems; and (c) defining
strategies for information encoding, e.g., by assigning
higher probability to events associated with the strongly
connected eigenfunctions.

Another issue, which is beyond the scope of this paper,
is that of determining the way in which the source func-
tions can be generated and the receiving functions de-
tected. Of course, this task is related to the design of
specific systems for particular applications. However,
the theory we have presented here establishes an appro-
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priate framework to deal with this kind of problem. This
approach is also useful for the solution of fundamental
and practical problems arising in synthesis problems of
3D wave fields.33~%5

In conclusion, we have presented a framework for the
study of the DOF of optical systems, based on a rigorous
EM formalism. This theory may prove useful for under-
standing and designing systems for which previous ap-
proaches are not applicable.

APPENDIX A: TENSOR GREEN’S
FUNCTIONS

The linearity of the EM field equations [Eqgs. (3.1)] implies
that the field can be represented in terms of the source
currents as in Egs. (3.2) (Ref. 30). The Green’s tensor
functions can be interpreted as the impulse response of
this linear system. Therefore I'{;(r, v’ )G, with @ a unit
vector, corresponds to the electric field produced at r by a
unit (harmonic) electric current density at r’, in the di-
rection 6.

The equations defining the tensor Green’s functions are
obtained on substitution of Eqgs. (3.2) into field equations

(8.1 and the specific boundary conditions.?® In free
space, for example, we get
VX Ty —jowgl'yy = 6(r — r')L,
VXTy+jouly =0,
V X Ty —jwel';p =0,
VX Tig+ jougley = —8(r — v, (A1)

where I is the unit dyadic.

In free space the tensor Green’s functions can be ex-
pressed in terms of a single scalar Green’s function. For
illustration, we consider the case of electric current
sources. The components of the tensor y,; = {I'11},; can
be calculated as 28

1 5
Yer = | Jou + fwe 12 G
1 G
Yo = j;m, k#1, (A2)
where
G- exp(—jk|r — I"|). (A3)

47|r — r'|

These expressions were used in the calculations of Section
8.

APPENDIX B: SUM RULE THEOREM

We prove here the result of Eq. (4.2).
Since I' : Vi X V; — C is continuous, we can expand it
as follows:

I'(r,r') = 2, ¢(r)®ahl(r). (B1)

i

By Parseval’s theorem we have that
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| e - S emr. @2
Vo i
We can also expand each ¢;(r) as
ci(r) = X gjap,(r) (B3)
J
and again apply Parseval’s theorem:

[ letmiar=3 g0 B4
Vg J

Integrating both sides of Eq. (B2) in V3, we obtain

f f IT(x, )|2dr'de = | D, |e;(r)|2dr. (B5)
VeJVyp Ve i

13

By applying the monotone convergence theorem® we can

interchange the order of integration and summation,
which leads to

J f IT(x, ¥')[?de'de = >, f |e;(r)|%dr
VedVp i Vg
=2 > lgil>, (B8
i J

where we have used Eq. (B4) in the last equality. This
completes our proof.

APPENDIX C: MAXIMIZATION OF
COUPLING COEFFICIENTS

We want to prove here the statement of Eq. (5.1) that
shows that the normalized receiving function that maxi-
mizes the coupling coefficient with a given source function
is the (normalized) function generated by the same
source. First note that |g|* = |(E,ag)y,|*. Let us then
consider any normalized receiving function axp(r) other
than Ey(r). According to the Schwarz inequality we can
write

|(Ex, ar)v,|* < (Ey, En)y,(ag, ag)y, = 1, (C1)
and multiplying by (E, E)y, = |(E,Ey)y,|?, we get
I(E, aR)VR|2 < |(E, EN)VR|2’ (C2)
i.e., what we wanted to prove:

|g[dy, agll® < |g[dy, Exl|% (C3)

APPENDIX D: MATHEMATICAL
PROPERTIES OF 1€

1. Compact

There is more than one way to prove that K is a compact
operator. Here we base the proof on the fact that each
component £, of the tensor operator is a scalar compact
integral operator. I'(r,r’) is composed of continuous
functions on r € V5 ; therefore K(r', r") is also composed
of continuous functions, and thus K is a bounded opera-
tor. To prove compactness we need to prove the exis-
tence of a sequence of bounded finite-rank operators

n—on
[K™] such that |K™ — K||—0, where the norm of an
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operator is defined as ||K| = sup{|KJ]:[|J]| < 1}. For
this purpose we use a known theorem that states the com-
pactness of bounded integral operators generated by L,
kernels.??

Let us consider the components of K:{K},, = #p,.
The operators £, operate from L, to itself; they are gen-
erated by kernels on V; X V;, and they are bounded.
Thus each one of them is a compact operator.’? There-
fore by definition there are sequences of bounded finite-

rank operators [# %] such that |£ (" — £ 4|*=50. Let
us consider the sequence of operators K™ in £,°, defined
as {K(”)}kl AM . We now show that |K™ — K]

—>0, leading to the conclusion that K is compact:
™ = K = sup [(K™ = K)d]|

9] <1
sup \/ f (AR VAR

,q 1)d|=1

//\

< E sup (£ = kpqlil
pa=1[jl<1
3 -
= > E® = ky,ll —— o, (D1)

p,q=1

where we denoted {J}, = j,

2. Nonnegative
We have to prove that (KdJ,dJ) = 0, and (KdJ,d) = 0 if and
only if J = 0. This is obvious from Eqgs. (5.2) and (5.5).

3. Self-Adjoint
Given an operator A:X — Y, the adjoint operator
A':Y — X is defined as the operator satisfying (Ax,y)y
= (x,Ay)xforeveryx € X, y € Y.

In our case, since £5 is a complex Hilbert space and
(KdJ,d) is always real, then K is self-adjoint; i.e.,
(Kdy,d5) = (I, Kdy) for all J;, Jy e £5.2°

APPENDIX E: SINGULAR-VALUE
DECOMPOSITION

We recall the definition of singular values Given two
Hilbert spaces X and Y, and A: X — Y a compact linear
operator, the square roots of the eigenvalues of the (self-
adjoint compact) operator A*A: X — X are called the sin-
gular values of A.

Singular-value decomposition theorem: 1If {u,} is the
sequence of the nonzero singular values of A repeated ac-
cording to their multiplicity; then there exist orthonomal
sequences {x,} € X and {y,} € Y, such that

36.

(n=1,2,...).
(E1)

Ax, = 2y, Ay, = ppx

For every x € X, it holds that the singular-value decom-
position is

= > (x,%,)x, + Px, (E2)
n=1
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with the orthogonal projection P:X — N(A). N(A) is
the nullspace of A.
In addition,
Av = D (2, 2,), - (E3)
n=1

The system (u, ,x, ,y,) is called a singular system of A.

APPENDIX F: GALERKIN’S METHOD

Galerkin’s method is a method to solve operator equations
in infinite-dimensional Hilbert spaces by orthogonal pro-
jection into finite-dimensional subspaces.??3¢ The origi-
nal equation in a Hilbert space H is replaced by another
equation defined in a finite-dimensional subspace Ey .
E is thus spanned by a finite set of functions y,,, called
the test functions.

We denote P, the orthogonal projection onto Ej .
Upon projection, the eigenvalue equation

Ax = ux (x e H) (F1)
leads to
PyAy = vy, (F2)

where y = Pyx.
The function y can be expanded in the y, as y

= Eg:lan)(n .
A solution to Eq. (F2) is obtained by solving®?
N
2 (Mnm - UInm)an =0, m=1 N, (F3)
n=1

where Mnm = (AXn ’ Xm) and Inm = (Xn > Xm)'
The solutions for v are second-order approximations to
the eigenvalues and are given by

det(M,,, — vL,,) = O. (F4)

The associated approximations to the eigenfunctions are
calculated from Eq. (F3).
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